Department of Physics

	DO 1. To goin students with the basic knowledge in physics and
	PO-1. To gain students with the basic knowledge in physics and
	Nano technology, theory and experiment.
	PO-2. To awareness students with the tools needed to analyse
	problems, apply mathematical formalism and experimentation.
	PO-3 To provide the students with technical skills necessary for
	successful bright future in physics/Nano-technology. These
Programme Outcome	include mathematics, computers, electronics and devices, and
	communication skills (oral and written).
	PO4: To introduce the acquired fundamental knowledge of
	physics, including basic concepts and principles of classical
	mechanics, electrodynamics, electronics ,quantum mechanics,
	Statistical Mechanics and thermodynamics & mathematical
	methods.
·	
	PO5: To show the ability to translate a physical description to a
	mathematical equation represent key aspects of physics through
	graphs and diagrams, and problem-solving.
	PO6: To Apply knowledge of concepts of physics, to analyze a
	variety of physical phenomena.
	PO7: Visualise the laboratory skills, enabling them to take
	measurements in a physics.
	PSO1: understanding awareness of principles, laws and
	theories of physics.
Programme Specific	PSO2: Apply vector algebra, differential and integral calculus
Outcomes	as well as graphical methods to solve physics problems;
	PSO3: To Increase ability to apply knowledge learned in
	classroom.
	PSO4: To solve physics problems using the appropriate
	methods in physics.

S.Y.Bsc. Physics	
	CO1: Understands the basic operations in complex numbers.
PHY-231 Mathematical	CO2: To explain graphical representation of complex numbers.
Methods in Physics I	CO3: To solve partial differential equations in Physics.
	CO4: To study the student vector algebra required in Physics.
	CO1: Student defines various laws, theorems and basic terms in
	electronics.

	CO2. student con coloulate novice valtage or express and
	CO2: student can calculate power, voltage or current across or
	through using circuit theorems and able to design a circuit.
DIIV 222 E1 4 .	CO3: To describe construction and working of transistor and its
PHY-232 Electronics	applications.
	CO4: To show DC load line and bias point. List, explain, and
	design.
	CO5: To present different applications of operational amplifier.
	CO1: Visualise periodic and oscillatory motion;
	CO2: To solve differential equations of motion for SHM,
PHY-241 Oscillations,	damped, and forced oscillators.
Waves and Sound	CO3: To describe oscillatory motion with graphs and equations,
	and use to solve problems of oscillatory motion.
	CO4: To discuss phenomenon of resonance and apply in
	different applications;
	CO1:Students can describe the geometrical formation of images
	by thin lenses.
	CO2: Use mathematical methods to calculate properties of
PHY-242 Optics	image, formed by combination of lenses.
	CO3: Student can explain optical aberrations produced in image
	by lenses and methods.
	CO4: Geometrical determination of polarization of light and
	concept.
	CO1: Use various instruments like CRO.
	CO2: To design experiments to test a hypothesis determine the
	value of an unknown quantity.
PHY-233 & 243:	CO3: To show the methodology of science and the relationship
PRACTICAL COURSE	between observation.
	CO4: Demonstrate experimental instrument to implement an
	experimental approach.
	CO5: Student can analyse data, plot appropriate graphs.
	CO6: Study in a group to plan, implement and report on a
	project/experiment.
T.Y. B. Sc. Physics	
	CO 1: Define a general equation for gradient ,divergence ,curl
	& laplacian in an orthogonal, curvilinear & other coordinate
	system.
	CO 2: To explain relative motion, Galilean & Lorentz
	transformation equations.

	CO 3: To show proper time, minkowskis space, Time dilation,
	length contraction.
PH-331: Mathematical	CO 4: To explain Michelson Morley experiment & its negative
methods of physics	result.
	CO 5:To solve Legendre polynomials, Hermite polynomials
	Bessel function of first kind.
	CO1: To draw crystal structure to develop it in 2D as well as
	3D and to determine Indices for 'Directions' and 'Planes'.
	CO2: to show them with packing fraction, coordination
	number, number of atoms per unit cell etc.
PH-332: Solid state physics.	CO3: Differentiate the crystal structure by XRD diffraction for
Til 0020 Solid Suute pinysiesi	inter-planer distance.
	CO4: To show various experimental techniques for
	characterization of material.
	CO1: To solve advanced problems involving the dynamic
	motion of classical mechanical systems.
	CO2: Student can apply the concept of mechanics of system of
	particles to solve dynamics problems
	CO3: Student interpreted an intermediate knowledge of central-
PH-333: Classical	force motion and the concept of converting two body problems
Mechanics:	in one
	CO4: Interpreted an knowledge of concept of laboratory frame
	and center of mass frame to calculate results of scattering
	experiments.
	CO5: Student use the concept scattering to get important
	information regarding the nature of interaction.
	CO6: Derive Lagrange and Hamilton's equations, and represent
	the equations of motion for simple mechanical systems.
	CO1: Obtain the formulae for total energy of an atom so that
	energy level diagram can be drawn.
	CO2: Student write laws, postulates in atomic and molecular
	Physics and able to compare various models of atomic
	structure.
PH-334: Atomic and	CO3: To Calculate quantum state of electrons in an atom,
Molecular Physics	spectral notation and electronic configuration of atom.
intologular i fryslos	CO4: Obtain formulae for Zeeman shift, wavelength of emitted
	X-ray s, Raman effect.
	1 91
	programming;
	CO5:Student can study origin of line spectra and able to compare continuous spectra, characteristic spectra. CO6: To show application of Duane and Hunt's rule, Moseley's law and its importance, Raman effect and Auger effect. CO7: Student can explain X-ray spectra, spectrum, Raman spectra and molecular spectra using quantum treatment. CO1:Student define types of programming languages. CO2:To understand basic competency used C-language for programming;

PH-335: C programming	CO3:To explain operators and expression in C-programming
	and navigate commands;
	CO4: To explain control statements and loops as well as
	capable of writing C-program.
	CO5:To explain arrays and pointers.
	CO6: To solve different numerical methods for different types
	of problems.
	CO1: Student can explain solubility, deformation in metals,
	phase diagram, molecular phases and smart materials.
	CO2: Explain the imperfections in solids, mechanism of plastic
	deformation, properties of ceramic materials.
	CO3: To solve problems on stress and strain of materials,
PH-336 B: Material science	CRSS of single phase metals, weight in percentage of
	compositions using lever rule.
	CO4: Student can show the defects in solids, diffusion
	mechanisms and types of phase diagram.
	CO5: To differentiate between elastic deformation and plastic
	deformation, linear polymers and cross linked polymers
	CO6: Student can obtain the CRSS of metals and the lever rule
	for phase diagrams.
	Study types of smart materials, properties of smart materials
	and their applications.
	CO1: Student can study the Biot-savart law, Amperes law,
	Coulombs law, Electric field, Magnetic field & Faradays law.
	CO2: Understand the method of electrical images, equation of
	continuity, B.H curve, Maxwell's equation.
	CO3: Solve numerical problem on coulombs force, magnetic
	induction, magnetic permeability, magnitude of electric &
PH-341: Electrodynamics.	magnetic vectors.
	CO4: Student can calculate work done by charges, total charge,
	force on the wire in different symmetry.
	CO5: To analyse pointing vector, polarization, reflection
	&refraction.
	CO6: To explain Biot Savart law in different symmetry
	problem.
	CO1: To study the historical aspects of development of
	quantum mechanics & black body radiation.
	CO2: explain the differences between classical and quantum
777 0 40 5	mechanics.
PH-342: Quantum	CO3:To derive De Broglie hypothesis, wave function and
Mechanics	uncertainty principle
	CO4: Obtain Schrodinger's time dependent & independent
	equation.

	COS: galva Sahradingar's standy state aquation for to obtain
	CO5: solve Schrodinger's steady state equation for to obtain
<u>,</u>	Eigen functions and Eigen values
	CO6: Use Schrodinger's spherically equation for H atom &
	rigid rotator.
	CO7: To write quantum numbers in atomic system, discuss
	different operator.
	CO1: To study transport phenomena, coefficient of thermal
	conductivity, viscosity and diffusion.
	CO2: To study the concepts and roles of thermodynamic
	functions.
	CO3: To solve Binomial distribution and Gaussian probability
PH-343: Thermodynamics	distribution.
and Statistical Physics	CO4: Discuss the concepts of microstate and macro state&
	basic postulates.
	CO5: Student can differentiate thermal, mechanical and general
	interaction between statistical system
	CO6: Student can compare MB, BE and FD distributions.
	CO1: Student can study GM counter, threshold energy, nuclear
	fission, fusion, critical mass.
	CO2: To analyses the basic properties of nucleus.
,	CO3: Classification of nuclear radiations, elementary particles
	and nuclear states, nuclear detectors
PH-344: Nuclear Physics	CO4: Compare baryons and mesons with Quark model.
i i i i i i i i i i i i i i i i i i i	CO5: Derive expression for energy of ions and frequency of RF
	signal in cyclotron, Q-value equation.
	CO6: Estimate binding energy from fission
	CO1: Review of amplification, voltage gain, line and load
	regulation, flip-flop, counters, register, multiplexer, de-
	multiplexer, etc.
	CO2: To show characteristics of various types of FET's and
DII 245 Electronice II	diode and construct a circuit.
PH-345 Electronics II	CO3:To study block diagram of IC 723, IC555, OPAMP.
	CO4: Compare various types of semiconductor diode (LED,
	photodiode, etc.) types of multi vibrator, types of power
	amplifier and 78XX,79XX.
	CO5: Draw a circuit for amplifier, a-stable, mono-stable and bi
	stable multi vibrator using IC555, IC723, various types of flip-
	flop and counters
	CO6: To study OP-AMP (IC741) as an adder, subs tractor,
	differentiator, integrator and comparator.
	CO7: To show POS and SOP expression on K-map and design
	of half adder & full adder.
	CO1: Student can study the thermal equilibrium and population
l .	inversion.

CO2: Explain the absorption, spontaneous and stin	
	nunated
emission with diagrams.	atimoulate 1
CO3: Obtain the Einstein's relation, conditions for	stimulated
PH-346 K: Laser	Li cola t
	iignt.
CO5: Study the characteristics of laser light	11 1
CO6: Student can Classify lifetime broadening, col	llision and
Doppler broadening	.1
CO1: Describe the theory energy gap experiment in	
CO2: Perform derivations of theory for the experin	nents in the
course.	. 0 .:
CO3: Carry out instructions laboratory experiment	
Thermodynamics, Mechanics, Modern Physics, Ele	ectronics and
Physics Practical-I Electromagnetics	
CO4: Show their results, using correct procedures	
CO5: Perform a quantitative analysis of experimen	ital data .
CO6: Interpret relationships in graphed data.	
CO1: Student can explain theory of experiments in	the course.
CO2: Student explain derivations of theory for the	experiments
in the course.	1
CO3: Students can carry out experiments in Optics	5,
Physics Practical-II Thermodynamics, Mechanics, Electronics and	
Electromagnetics	
CO4: Interprets results using correct procedures.	
CO5: Setup a experiment using a appropriate dat	a .
CO6: student can have interpreted relationships in	graphed data
and method of plotting.	
CO1: Student can select appropriate project.	
CO2: Describe the theory of experiments in the co	ourse.
Physics Practical-III: CO3: Perform library work for the experiments in	
Project CO4: Student can interpreted, analyses results, using	
methods.	_
CO5: Student can analyses the project data.	
PO1: To develop scientific attitude, provide in-dep	oth
knowledge of scientific and technological concepts	s of Physics.
PO2: student get some research experience within	a specific
field of physics, through a project work	
PO3: To enrich knowledge through problem solving	ng,
minor/major projects, seminars, tutorials, review of	f research
articles/papers, participation in scientific events, st	udy visits,

Dua sussiana C :	PO4: To familiarize with recent scientific and technological
Programme Outcomes	_
M.ScPhysics	developments.
	PO5: use creativity, critical thinking, analysis and research
	skills to solve theoretical and real-world problems
	PO6: To create foundation for research and development in
	Physics
	PO7: use creativity, critical thinking, analysis and research
	skills to solve theoretical and real-world problems
	PO8: To help students to learn various experimental and
	computational tools thereby developing analytical abilities to
	address real world problems
	PO9: able to enter new problem areas that require an analytic
	and innovative approach
	PO10: be able to understand the role of physics in society and
	has the background to consider ethical problems
	PO11: know the historical development of physics, its
	possibilities and limitations, and understands the value of
	lifelong learning
	To help students to build-up a progressive and successful career
	in Physics.
	CO-1-Student can study ector spaces and subspaces, Linear
	dependence and independence, Basis and t Dimensions, linear
	operators, Inverses.
	CO-2: Student can learn matrix representation of an operator,
PHCT111: MATHEMATICAL	change of basis, unitary transformation. (These concepts should
METHODS IN PHYSICS	be discussed with the help of problems), Eigen values and eigen
	functions of SHM.
	CO-3 Student will get deep knowledge about Definition,
	Dirichlet's condition, Convergence, Fourier Integral and
	Fourier transform, Convolution theorem, Parseval's identity.
	CO-4 Student can get knowledge Fourier transform & Laplace
	transform of Dirac Delta function.
	CO 5: Student learn Eigenvalues & eigenvectors of Hermitian
	& Unitary transformations, Diagonalization.
	CO-1. Student will learn Concept of symmetry, invariance
	under Galilean transformation.
	CO-2 Student will be familiar Variation principle, Euler's
DUCT112, CLASSICAL	equation, applications of variation principle, shortest distance
PHCT112: CLASSICAL	problem, brachistrochrone, Geodesics of a Sphere
MECHANICS	CO-3 Student can perform Two body central force problem,
	stability of orbits, condition for closure, integral power laws,
	Kepler's problems, orbits of artificial satellites

PHCT113: QUANTUM MECHANICS	CO-1 Student learn about adequacy of classical Physics, wave packets and uncertainity relations. Schrodinger wave equation and probability interpretation. CO-2 Student learn about Simple one dimensional problems wells, barriers and harmonic oscillator (One dimension) CO-3 Student learn about Representation of states and dynamical variables, observables, self adjoint operators, eigen functions and eigen values, degeneracy. CO-4 Student learn about Hilbert space, Dirac's bra and ket notation, dynamical variables.
PHOT114: ELECTRONICS	CO-1 Students can understand Study of Timer IC 555: Block diagram, Astable and monostable multivibrator circuits. And study of VCO IC 566 and its applications. CO-2. Students will learn Concept of Voltage Regulator using discrete componenets. CO-3 Students can learn Rigid body dynamics and Small Oscillations and other related calculations.
PHCP115: PHYSICS LABORATORY 1	CO-1 Student can understand Michelson Interferometer. Resistivity of Ge at various temperature by Four Probe method and determination of band gap CO-2: Student familiar with Susceptibility, Gauy method. Ionic Conductivity of NaCl CO-3: Student will have deep knowledge of Skin depth in Al using electromagnetic radiation. Counting statistics, G.M. tube. CO-4: Student will get deep understanding of End point energy and Absorption coefficient using G.M.tube. Conductivity of Plasma at various pressure for AC/DC source CO 5: To understand Electron Spin Resonance. (ESR) Fabry-Parot Etalon.
PHCT121: ELECTRODYNAMICS	CO-1 Student will have idea Multipole expansions for a localized charge distribution in free space. CO-2. Student will learn linear quadrapole potential and field, static electric and magnetic fields in material media. CO-3 Student gain knowledge of Energy relations in quasistationary current systems CO-4 Student expose to the basic nhomogeneous wave equations, Lorentz's and Coulomb's gauges.
PHCT122: SOLID STATE PHYSICS	CO-1 Student can gain knowledge of Nearly free electron model, DC and AC electrical conductivity of metals. Bloch theorem (with proof). CO-2 Student learn Kronig-Penney model, Motion of electron in 1-D according to band theory. CO-3 Student can apply Classical theory of diamagnetism, Langevin theory of Paramagnetism, Quantum theory of Paramagnetism,

	CO 1 Christiant learn Farmana and tions. Wiscosth again. Chris
	CO-4 Student learn Ferromagnetism: Wiess theory, Curie
	point, Exchange integral, saturation magnetization and its
	temperature dependence.
	CO1: Student learn about Specification of the state of the
	system, Macroscopic and Microscopic states
	CO2: Student learn about Equilibrium conditions and
	constraints, Distribution of energy between systems in
PHCT123: Statistical	equilibrium
Mechanics in Physics	CO3: Student can understand micro-canonical ensemble,
	System in contact with heat reservoir, Canonical ensemble,
	Applications of canonical ensembles
	CO-1 :Students will understand Atomic structure and atomic
	spectra
	CO-2: Student can understand Atomic structure and atomic
PHOT124: ATOMS AND	spectra.
MOLECULES	CO-3: Student can ESR- Principles of ESR, ESR spectrometer,
	total Hamiltonian, hyperfine structure
	CO-4: Student can learn how to Laue theory of X-ray
	diffraction, Geometrical structure factor, Atomic scattering
	factor.
	CO1: Student can Study of voltage controlled oscillator using
	IC-566
	CO2: Student can gain Frequency multiplier using PLL-565(for
	2 & 3 operation using counter.) . Fold back power supply.
	CO3: Student can learn Diode pump using UJT. DAC (R-2R
PHCP125: PHYSICS	and Binary type for 4-bit).
LABORATORY II	CO4: Student can analyses Pulse train generator. SMPS power
	supply
	CO5: Student can learn CVCC power supply. Active filter-
	Low pass, High pass, Band pass, and Notch Filter using OP-
	AMP
	CO1: Student study the physical characteristics such as
	electronic structures, optical and transport properties of
	semiconductors and IV characteristics.
	CO2: Student gain knowledge the transport and optical
	properties of semiconductors.
	CO3: Student can deep sense electronic structures of
	semiconductors to their atomic and crystal characteristics.
	CO4: Student introduce with fundamental physics process with
	device characteristics.
PHCT231: Physics of	CO5: Students can relate fundamental principles and processes
Semiconductor Devices	to operational semiconductor devices and their uses.
	CO6: Student can describe semiconductor properties, processes
	and device characteristics using equations.

	CO-1 Student will learn interaction of radiation with matter:
	Absorption, spontaneous and stimulated emission, population
	inversion, properties of laser.
	CO-2 Student can perform Three and four level system and rate
	equations, threshold pump power
B.1.0===================================	CO-3 Student can understand of Different types of gas lasers:
PHCT232: LASERS	He-Ne laser, nitrogen laser, CO2 laser
	CO-4 Student have basic knowledge ndustrial applications:
	Cutting, molding, melting, welding, drilling.
	CO-1. Student will be able to perform Signals, random signals,
	and time series (basic), Signal analysis
	CO-2. Student can undestande Important and fields applications
	of vacuum, kinetic theory of gases
•	CO-3. Student can have knowledge of Vacuum Gauges: Mc
	Leod, Thermocouple (Pirani)
PHCT233: EXPERIMENTAL	CO-4. Student is able to understand Penning, Hot cathode
TECHNIQUES IN PHYSICS I	ionization (triode type), Bayard-Alpert
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	CO1: Student can deep sense about quantum size effect.
	CO2: Students can gain knowledge of Surface & Interface
	effects, Surface energy & Surface curvature.
PHOP 234: Physics of	CO3:Student can explain the quantum confinement effect on
Nanomaterials	properties of various types of inorganic nanoparticles, 1D
	nanostructures.
	CO4: Student can analyses chemical and physical principles in
	the synthesis of inorganic nanostructured materials.
	CO5: Student can appropriate synthesis techniques and
	characterization of different quantum nanostructures.
	CO6: student can describe how the nanoparticle size can affect
	the morphology, crystal structure, reactivity, and electrical
	properties.
	CO7: student can gain knowledge of influence of
	dimensionality of the nanomaterials on properties and their
	future applications.
	CO1: Student can understand theory & programs algorithm.
	CO2: Student can study flowchart chart of the concepts
	discussed.
DHCD25. Computation 1	CO3: Students can write the program using flowchart.
PHCP235: Computational	CO4: Enter the required value by running the programme on
Physics	turbo C.
	CO5: Interpret the result.
	•

	COC W 1' 1' 1 1 1 1 11 11 11 11 11
	CO6: Visualize the motion of pendulum, oscillations and
	miller indices on turbo C
	CO1: Students gain knowledge of elementary particles and
	nuclear states in terms of their quantum numbers.
	CO2: Student can predict the properties of nuclear ground and
	excited states based on the shell model.
	CO3:Student describe the properties of strong and weak
	interactions.
	CO4:Students can explain the different processes by which
PHCT241: Nuclear Physics	ionizing radiation interacts with matter and the construction and
	applications of detectors.
	applications of detectors.
	CO5: Student have the basic properties of nucleus.
	CO6: Student can gain knowledge of the kinematics reactions
	and decay processes.
	CO7: Student can analyses production and decay.
	COS: Student can evaluate radiation anaray lagged by page 22
	CO8: Student can evaluate radiation energy losses by passage
	through the matter.
	CO1: Student have deep sense of laws of thermodynamics,
	thermodynamic functions, phase diagram, molecular phases,
	diffusion.
	CO2:Students have knowledge of defects in the material and
	classify them.
PHCT 242: Material	CO3: Student can analyses the imperfections in solids, the
Science	concept of phase & diagram, Construction & phase diagrams
	and reactions, mechanism of plastic deformation by slip,
	properties of ceramic materials,
	CO4: Student can Solve problems on Phase rule, weight in
	percentage of compositions using lever rule, diffusion, CRSS,
	thermodynamic problems.
	CO5: Student can analyses phase diagrams.
	CO1: Students gain basics of Sources of Electromagnetic
	Radiations: Different types of radiations.
	CO2: Student can explain sensors: Sensor's characteristics,
	Classification of sensors
	CO3: Student learn the X-ray Diffraction – Production of X-
	rays, Types (continuous and characteristics)
	CO4: student can understand Bragg's diffraction condition,
DUCT2/2, EVDEDINGENITAL	principle, instrumentation (with filters) and working,
PHCT243: EXPERIMENTAL	CO5: student can gain knowledge Laue's method, Rotating
TECHNIQUES IN PHYSICS II	crystal method, Powder
	CO6: Student can understand Optical Microscopy: Principle,
	Instrumentation and Working of optical microscope.

PHOP 244 : Physics of Thin Films	CO1: student can gain knowledge of influence of dimensionality of the nanomaterials on properties and their future applications in this films.
Films	future applications in thin films. CO2: Student can analyses chemical and physical principles in
	the synthesis of Thin Films.
	CO1:student can design hypothesis for their work to be carried out.
PHCP:245: Project	CO2:Student can describe the underlying theory of experiments in the project work.
	CO3: Student can describe the derivations of theoretical models of relevance for the experiments in the project.
	CO4: Perform a quantitative analysis of experimental data including the use of computational and statistical methods where relevant.
	CO5: Student can show their results, using correct methods.